- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources5
- Resource Type
-
0004000001000000
- More
- Availability
-
23
- Author / Contributor
- Filter by Author / Creator
-
-
Vogelstein, Joshua T (5)
-
Chaudhari, Pratik (4)
-
De_Silva, Ashwin (4)
-
Priebe, Carey E (3)
-
Ramesh, Rahul (3)
-
Yang, Weiwei (2)
-
Yu, Siyu (2)
-
Bai, Yuxin (1)
-
Bichuch, Maxim (1)
-
Brown, Julia (1)
-
Burns, Randal (1)
-
Caffo, Brian (1)
-
Charles, Adam (1)
-
Cowan, Noah J (1)
-
Dey, Jayanta (1)
-
Eaton, Eric (1)
-
Etienne-Cummings, Ralph (1)
-
Hartung, Thomas (1)
-
Helm, Hayden (1)
-
How, Javier J (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available December 1, 2026
-
Bai, Yuxin; Shuai, Cecelia; De_Silva, Ashwin; Yu, Siyu; Chaudhari, Pratik; Vogelstein, Joshua T (, arxiv.org)Free, publicly-accessible full text available July 10, 2026
-
De_Silva, Ashwin; Ramesh, Rahul; Yang, Rubing; Yu, Siyu; Vogelstein, Joshua T; Chaudhari, Pratik (, arxiv.org)Free, publicly-accessible full text available January 30, 2026
-
Helm, Hayden; de_Silva, Ashwin; Vogelstein, Joshua T; Priebe, Carey E; Yang, Weiwei (, Mathematics)We propose and study a data-driven method that can interpolate between a classical and a modern approach to classification for a class of linear models. The class is the convex combinations of an average of the source task classifiers and a classifier trained on the limited data available for the target task. We derive the expected loss of an element in the class with respect to the target distribution for a specific generative model, propose a computable approximation of the loss, and demonstrate that the element of the proposed class that minimizes the approximated risk is able to exploit a natural bias–variance trade-off in task space in both simulated and real-data settings. We conclude by discussing further applications, limitations, and potential future research directions.more » « less
-
De_Silva, Ashwin; Ramesh, Rahul; Ungar, Lyle; Shuler, Marshall Hussain; Cowan, Noah J; Platt, Michael; Li, Chen; Isik, Leyla; Roh, Seung-Eon; Charles, Adam; et al (, Conference on Lifelong Learning Agents (CoLLAs))
An official website of the United States government

Full Text Available